
E COMPUTER
ED COURSE

ST OF YOUR MICRO

CHARACTER CRUNCHING We take a
general look at word processing and its
application for home micros

ORIC’S OFFSPRING The Atmos is the
greatly enhanced successor to the Oric-1

SPORT We review the exciting
Scuba Dive game on three popular micros

KEY POSITIONS Continuing our series on
file handling we discuss two methods of
organising random access files

MEMORY JOGGING We sce how the :
microprocessor handles data transfer 266

1) What advantage do the Z80 registers have over
the 6502?

2) What is the effect of simultaneously pressing the
‘Z and Function keys on the Oric Atmos?

FROM CHAIN TO CHECK DIGIT A
weekly glossary of computing terms 268 3) How many points do you score for catching an

electric eel in Scuba Dive?

4) In computer programs, user RAM is generally at
a premium. Why, therefore, do we have to reduce
the top of the Basic Text Area in the Subhunter
program?

ASSEMBLING THE CAST We definethe ~~
sprites for our Subhunter game 264

NOW HEAR THIS A simple program that
produces a challenging audio game

ADDRESS This week we
look at machine code instructions for 216
addition and subtraction

QUICK SELLERS Quicksilva is a dynamic 7
British software company with a top-selling 280
catalogue of games

QUIZ
COVER PHOTOGRAPHY BY CHRIS STEVENS

HOME COMPUTER ADVANCED COURSE — Price UK 80p IR £1.00 AUS $1.95 NZ $2.25 SA R1.95 SINGAPORE $4.50 USA and CANADA $1.95 How to obtain your copies of HOME COMPUTER ADVANCED COURSE - Copies are obtainable b g out a subscription. Subscription rates: for six months (26 issues) £23.80; for one year (52 issues) £47.60. Send your order and remittance to Punch Subscri n Back Numbers UK and Eire - Back numbers are obtainable from
, LONDON WC2N 4BT at cover price. AUSTRALIA: Back numbers are obtainable from HOME COMPUT
AFRICA, NEW ZEALAND, EUROPE & MALTA: Back numbers are available at cover price from your news

How to obtain binders for HOME ADV
binder (incl.
COURSE BIN

Springfield 2137.
Note - Binders and back numbers are obtainable subject to availability of stocks. Whilst every attempt is made to keep the price of the issues and binders constant, the publishers reserve the right to increase the stated prices at any time when circumstances dictate. Binders depicted in this publication are those produced for the UK market only and may not necessarily be identical to binders produced for sale outside the UK. Binders and issues may be subject to import duty and/or local taxes, which are not included in the above prices unless stated.

<o.
WORD PROCESSING/APPLICATION |

CHARACTER
CRUNCHING
By far the most popular serious use for
microcomputers is word processing. Most
people need to produce documents such as
letters, reports or essays from time to time,
and a word processor makes all of these
tasks much easier. We take a detailed
overview of the subject, and discuss some of
the more popular packages.

Word processors are really nothing more than
computerised versions of the typewriter. Text is
keyed in through the computer keyboard and
appears on the screen. Changes can be made
easily without the need for retyping the whole
document and once the wording is correct, the text
is printed out by a computer printer.

Apart from a general fear of computers, the
only thing likely to put people off beginning to use
a word processor is the problem of not feeling at
home using 2 keyboard. Yet it is easier to get
started using a keyboard on a word processor than
on an ordinary typewriter. The inevitable mistakes
of the fumbling two-fingered typist having a first
go on a typewriter can create an awful mess. These
can be put right in seconds on a word processor to
produce copy that is perfect the first time it is
printed — and that is a real confidence builder.

Just about any home micro can be used for
word processing, but some are not as well suited as
others. In some cases this is because good word
processing software is not available for the
particular machine; in other cases it is the micro
and its peripherals that are not suitable to the task.

The cost of even a simple word processing system
can be quite high, as the necessary extras can easily
cost twice as much as the computer itself. Usually
the most expensive single item is a printer.
Without access to a good printer there is little
point in having a word processor package. For the
foreseeable future just about all word processed
text is going to end up printed on paper — the age
of electronic mail, where all text is sent directly
from one micro to another, is still a long way off.

Even the simplest printers are fairly expensive,
and yet the quality of the printing they produce is
relatively poor. In many cases word processing
demands high quality printing. After all, there’s
little point in spending your time with a word
processor getting the wording of a job application
letter just right if the result is then printed out ona
dot matrix printer. Daisy wheel printers offer
better quality printing but are slow and expensive,
although prices are coming down quite quickly.
Some electronic typewriters can have interfaces
fitted to them so that they can be used as computer
printers. This may help save money for people
switching from typing to word processing.

One solution to the dilemma of gaining access
to a quality printer is for several friends or a
computer club to share the cost of the machine
between them. Users would still have the problem
of interfacing their micros to use the printer. With
some computers this is easy because they have
standard interfaces, so each user will only need to
buy asuitable cable to link the two together. Other
micros, such as the Commodore and Atari
machines, have interfaces that limit them to their

Ee ERC

BBC Micro
The combination of BBC Micro

and Torch disk pack allows
business software to be used,
including the excellent
Wordstar. The cost of the
system is, however, higher than
many business micros.
Admittedly a cheaper printer
could be used, and the Perfect
Writer software that is included
in the price of the Torch disk
pack could be used instead of
buying Wordstar. This would
bring the price down to about
£1,500

BBC Micro £399
Torch disk pack £804
Wordsiar £340
Silver Reed EXP 770
Printer £1,024
Printer Cable £10
TOTAL £2,577

THE HOME COMPUTER ADVANCED COURSE 261

own brand of printers. A few micros, including the
Sinclair Spectrum, have no printer interface as
such, and so an interface add-on has to be bought.

With a suitable printer available, your next task
is to choose the appropriate processing software.
A wide range of programs is produced for the
more popular makes of computer, while only one
or two are available for the less popular machines.
The quality varies considerably between different
programs. Some are crude and allow only simple
editing, such as inserting and deleting text. Others
allow whole passages to be moved around within
the article, present the text on the screen just as it
will appear on paper, or justify the text (adjust the
word spacing so that the line length is uniform, like
the text you are now reading).

Some word processors can search for a
particular word or phrase, so a spelling mistake
that has been repeated throughout an article can
easily be put right. Programs to check the spelling
of every word in a piece of text are sold for certain
word processors; and it is possible for other
programs, such as a mailing list or a database, to
work in conjunction with the word processor.
More sophisticated word processing programs are
designed to make use of the features of certain
printers. Dot matrix printers can often produce
several different types of printface (such as
italicised, bold or small letters) and so some word
processors allow the different types to be mixed in
one article. A few word processors can be
expanded to use the ability of certain dot matrix
printers to produce graphics. This allows many
new typefaces to be used, including letters larger
than normal and various ornate styles such as
copperplate handwriting. Used in moderation
these can liven up the printed text considerably.

Daisy wheel printers can use ‘proportional
spacing’ to give more space to wide letters such as
‘w’ and less to narrow ones like ‘i’, rather than
allowing them all the same space as an ordinary
typewriter would do. Some word processors can

262 THE HOME COMPUTER ADVANCED COURSE

use this facility, which makes the text much more
readable, and yet still manage to ‘justify’ both
margins. This is ideal for producing community
newspapers or club magazines because it gives a
professional look without incurring the expense of
proper typesetting. The interchangeable print
wheels allow various typefaces to be chosen to suit
the article. Alternatively, some typesetters will
accept word processed copy on floppy disk or
even tape. This gives top quality results without
the cost of having someone key all the text into a
typesetting machine.

Word processing software is sold in various
formats including tape, disk, cartridge and ROM
chip. More important, however, is the way word
processed text is stored — usually on tape or
floppy disk. Although cheap, tape is awkward,
slow and limits the length of articles to the size that
can be held in memory. Disks are better because
they are fast, reliable and allow long articles to be
written. New ways of storing data are starting to
appear. The Sinclair Microdrive, for example, is
cheap yet can store large amounts of data and find
a specified part of the text in seconds. However,
few word processors for the Spectrum are able to
work with the Microdrives yet. Another
interesting system is the tape drive used by the
Coleco Adam, a home micro obviously designed
with word processing in mind because it includes a
daisy wheel printer. It uses modified cassette tapes
to store its data and these can find any item within
a few seconds.

Saving word processed copy on tape or disk
allows long articles to be written over several days,
standard letters to be used many times and copies
of all work to be kept. It’s also a good idea to make
copies of long items at various stages while they
are being written. If this isn’t done there is a danger
that some accident such as a power cut will destroy
all the work.
Some programs have odd commands and

awkward key combinations to memorise, while

ni

ae

Ay

Sinclair Spectrum

This is the cheapest efficient
word processing system, but it
is still quite expensive. Several
limitations are imposed by the
Spectrum, including a poor
keyboard, the lack of a monitor
interface and the provision of
Microdrives instead of disk
drives. However, it would be

possible to add a better quality
keyboard. Tasword Two is one
of the few Spectrum word
processors that will work with
the Microdrives

Sinclair Spectrum (48K) £130
Interface 1 £50

Two Microdrives £100

Tasword Two software £14
Shinwa CP80 Printer £230

RS232 adaptor for CP80 £60
Printer cable £15

TOTAL £599

Seta ee

Zh daterFact 2
Win: Micrédrapes

Paratiel Printer

IAN McKINNELL

others are straightforward. Some micros, such as
the Sinclair Spectrum, have poor quality
keyboards that make life a misery. At least there
are add-on keyboards for the Spectrum that bring
it up to an acceptable standard. Keyboards with
extra function keys are good because they cut
down on the number of command codes that have
to be memorised. The screen display can also
cause problems. Several micros show only a small
amount of text on screen at once, which makes
writing much harder. The Commodore Vic-20,
for example, can only show text 22 characters
wide, whereas business machines usually have an
80-character screen width. The ideal micro for
heavy use is one that gives at least a 25-by-80
character text display and can use a proper
monitor to give a clear sharp image.

The design of the letters shown on the
computer screen varies considerably. Some
machines make up each letter from more dots
than others, which makes the display easier to read
and work with. A few home micros use letters only
six dots wide while most use an eight dot wide grid.
A few business machines have remarkable 16-by-
16 dot characters, which are of superb quality.
Some people find it hard to work with a screen and
have to print the text out on paper before they can
read through it.

Modest home systems are suitable for writing
letters and other short items, but more equipment
is needed to make writing books or long reports
practical. If you need to do a lot of word
processing, you will need a system with a monitor,
two disk drives, a good printer, a typewriter-style
keyboard and a good piece of word processing
software. Expanding a home micro to this level is
expensive — often more expensive, in fact, than
buying a true business micro.

Business machines offer other advantages.
Because they were designed for business needs,
they have good keyboards, screens, disk drives
and printer interfaces. Even so, their most

WORD PROCESSING/ APPLICATION

important advantage is the high quality software
available for them. There is such a range of good
software available because most business
computers use one of a few standard operating
systems, which means each word processor
program is available for many different machines.

By far the best known business word processing
package is Wordstar, which is available for the
CP/M, CP/M-86 and MS-DOS operating
systems. The program has some sophisticated
features but is expensive, costing over 20 times as
much as the average home micro program. The
cost of a business word processor is high but it is a
false economy for a small business, or even a
serious writer, to use a home micro for large
amounts of word processing. The time wasted
using a limited system will soon outweigh any
money saved. | |

The cost of serious business systems is high, but
it is coming down all the time. Some home micros
can be expanded to use standard operating
systems such as CP/M, so people who have
already invested a lot in a home micro system are
beginning to be able to use serious software
without having to pay too much extra. Another
trend is helping to bring down the cost of serious
word processing. Several companies are including
word processing programs such as Wordstar free
of charge with their computers. Some companies,
however, give away programs that are not up to
Wordstar’s standards.

The newest fad to hit word processing is word
processing on the move. Several battery-powered
computers are sold with built-in word processors
to allow busy executives to write memos and
letters anywhere at any time. These machines are
beyond the pocket of most home micro users and
do not have many other uses. But hand-held
machines do seem to suggest that word processing
is becoming more and more common. Maybe not
only the typewriter is doomed to extinction, but
‘pen and paper as well.

Commodore 64
The Commodore 64 offers the
most reasonably priced word
processor with a disk drive.
Having only one disk drive is
limiting and the Commodore 64
can produce only a 40-
character wide display. A
cheaper Commodore printer is
available at about £200 but its
print quality is very poor

Commodore 64 £200

Commodore disk drive £200
Easy Script software £75
Commodore 1526 printer £345
TOTAL £820

ooooo]f
S\ 0000 /F

Moving Target
A sprite is made up from 21
rows of three bytes; these bytes
are actually binary bit patterns,
but are stored in the BASIC
program data lines as their
decimal number equivalents.
These values can be seen beside
the sprite diagrams and in the
program listing. The program
POKEs the values into a
dedicated area of RAM, where
the video controller chip
accesses them as sprite data,
displaying and moving them on
the screen with a minimum of
programming effort

SHIP - SPRITE 0
1 2 3

128 6432168 4 2 U.1286432168 4 2iu 128643216 84 2 u

ASSEMBLING THE
CAST —
Sprite creation is one of the most exciting
features of the Commodore 64’s graphics
capabilities — both in terms of the
enjoyment gained in designing them and
because they allow fast-moving games to be
written in BAsIc. In this part of our project to
create a Subhunter game, we take you
through the full procedure of sprite design.

A sprite is a large movable graphics shape. It is
designed in much the same way as the eight-by-
eight user-defined characters discussed earlier in
the course (see page 233) but is constructed on a
much larger grid. Once a sprite is defined,
attributes such as colour and screen position are

‘controlled by a set of special registers in the
Commodore 64’s video control (or VIC) chip.
A sprite is made up of 21 rows of 24 pixels.

Each row consists of three eight-pixel segments
and is represented by,three bytes of memory, so 63
bytes in all are required to store the data for one
sprite. As with user-defined characters, each pixel
on the sprite grid that will be illuminated in the
final sprite shape is represented by binary one
(and the non-illuminated pixels by binary zero).
Thus, for each row of the sprite we can calculate
the decimal equivalents of each group of eight
binary digits. The diagrams we give here show the
four sprites that will be used in the Subhunter
game. The numbers down the side of each
drawing are the decimal equivalents that will form
the data statements for each sprite (as given in
lines 6000 to 6370 of the program).

LOWERING THE TOP OF MEMORY
Once a sprite has been defined and converted into
a series of DATA statements, the data must be READ
and POKEd into memory. Sprite data can be
positioned in several memory locations. For

264 THE HOME COMPUTER ADVANCED COURSE

EXPLOSION -
4

example, using the locations starting at 12288 will
place it in the BAsIc program’s area, which runs
from 2048 to 40960. As a Basic program is typed
into the Commodore 64, it fills memory space
from location 2048 onwards. A program would
need to be 10 Kbytes long before it would reach
location 12288 and thus overwrite the sprite data.
However, when a program is running, any
variables used are stored in the area above that
used to store the program — string variables, in
particular, build down from the top of the BAsic
program area. As the Subhunter game uses the
timer variable, TIS, regular updating of its value
and its subsequent storage will eventually
overwrite the area in which we wish to store the
sprite data.
A solution to this problem is to lower the top of

the BASIC program area to below the area in which
the sprite data is kept. The pointer to the address
of the top of memory is held at locations 55 (lo-
byte) and 56 (hi-byte). Normally these two
locations contain the values 0 and 160
respectively, which represent the address 40960.
In lo-hi form, the location 12288 is given as 0
and 48. We can lower the top of memory to this
location by simply POKEing these values into
locations 55 and 56 at the start of the program (see
line 90).

SPRITE POINTERS
As sprite data can be positioned in various parts of
memory, a pointer is needed to indicate where
that data begins. There are eight sprite pointers,
held in locations 2040 (for sprite 0) to 2047 (for
sprite 7). The value held in each sprite pointer is
related to the area that holds the sprite data by this
formula: start of 63 bytes of data = (sprite
pointer)X64. The data for the ship in our program
starts at 12288 and the ship is to be designated
sprite 0, so the pointer in location 2040 is 192

SPRITE 1
3 2

128 64 32168 4 2 u 1286432168 4 2\u.1286432168 4 2iu.

| } |

(12288/64). The next block of data is for the
explosion, sprite 1. If we set the pointer in location
2041 to 193, then the data must start at 12352.
These are the values we are using:

63BytesOf -»« 12288~=—«12352~| «12416 ~=—«12480~
Sprite Data to to

12478 12542

Notice that one byte remains unused at the end of
each block of sprite data. The parts of the program
listing that read the sprite data of memory and
specify the sprite pointers are contained in lines
2000 to 2210.

MANIPULATING SPRITES
The VIdeo Control (VIC) chip has several special
registers that are used to control sprites. The first
location of the VIC chip is 53248, and it is simpler
for our program to describe the locations of all the
other registers as relative to this. If we let V=53248,
the next location of the VIC chip, 53249, can be
termed V+1 and so on. V should be defined, with
other variables, at an early stage (see line 100).

The colour of each sprite is set by POKEing a
colour code number (in the range 0 to 15) into a
special register. Each of the eight sprites has its
own colour register; these run from V+39 to V+46.
For example, to colour the ship black we simply
POKE the colour code 0 into location V+39. The
other sprites can be coloured in the same way (see
lines 2220 to 2250). 7

Positioning sprites on the screen will be
discussed in greater detail in the next instalment.
For now it is sufficient to know that the x co-
ordinate of sprite 0 is held in location V, the y co-
ordinate for sprite 0 is held in location V+1 ; the x
and y co-ordinates for sprite 1 are held in V+2 and
V+3 respectively, and so on up to location V+15
(see lines 2260 to 2280).

Sprites can be expanded horizontally,
vertically, or in both directions, by a factor of two.
The ship and sub sprites may seem rather
squashed horizontally, but we will now expand
them to twice their original length. In fact all four
sprites will be expanded horizontally. The VIC
chip register controlling horizontal expansion is

DEPTH CHARGES - 2
3 1 eer oe

128 64 32168 4 2 u 1286432168 4 2u 1296432168 4 2u

PEC
Sones oan

V+29, which is easier to use than the other registers
we have discussed. Instead of using eight different
registers to control the attributes of each of the
eight sprites, all that is required is to switch the
function on or off. Therefore only one bit within
the register is required to control the horizontal
expansion for each sprite. If a sprite is to be
expanded horizontally, the corresponding bit in
the V+29 register must be set to 1. The following
table shows the POKE required to expand all the
four sprites we have defined:

= 15 (decimal)

Expansion in the vertical direction is controlled by
V+23. The explosion, sprite 1, is expanded
vertically and horizontally, thus doubling its size
(see lines 2290 to 2310).

Our final task is to turn the required sprites on.
A single bit in the VIC chip register, V+21, is used
to switch each sprite on or off. In the Subhunter
game only the ship and the sub are initially turned
on (lines 2310 to 2360).

Once you have typed all of the listing in, you
should test that the sprite data has been read
correctly. To do this, run the program and break
into it using RUN or STOP when the timer appears
at the top of the screen. Entering the following
statements, without line numbers, will position
and display all four sprites created by the routine.

POKEV,160 (Ship’s co-ordinate)
POKEV+2,240: (Explosion’s x and y

POKEV+3, 100 co-ordinates)
POKEV+4, 160: (Depth charge’s

POKEV+5,100 X and y co-ordinates)
POKEV+6, 100: (Submarine’s x and y

POKEV+7,100 co-ordinates)
POKEV+21,15 (Turns on sprites 0-3

If the program stops with an ‘OUT OF DATA ERROR’
message, check how many numbers there are in
the DATA statements. There should be 63 for each
sprite. If the program crashes and the keyboard
fails to respond, make sure that V has been
declared in line 100. It is always a good idea to
SAVE your program before running it.

SUBMARINE - SPRITE 3
1 2 3

128 64 32168 4 2 u 1286432168 4 2 u 128643216 8 4 2 y

1 REM***CS64 GRAPHICS##xxxexeee

70 POKE 55,0:POKE 34,48:CLR

:=REM LOWER MEMTOP

100 VEsseqe:FL=0:5C=0 .

110 Gosue 1000

:REM SCREEN SETUP (see p2ts)

120 GOSUB 2000

:REM SPRITE CREATICN

2000 REM#**SPRITE CREATION***®

2020 REM** READ SHIF DATA ¥**

2030 FOR I=12288 To 12350

2040 READ A:POKE I,A:NEXT I

2060 REM** READ EXP DATA ##
2070 FOR 1=12352 Tao 12414

2080 READ A:POKE I ,A:NEXT

2100 REM** READ CHRG DATA =

2110 FOR I=12416 To 12478

2120 READ A:FOKE I ,A:NEXT

2140 REM** READ SUB DATA baad

2150 FOR I=12480 To 12542

21460 READ A:POKE 1.&:NEXT I

21830 REM** SET POINTERS ee

21950 POKE 2040,192:POKE 2041,

IFS:POKE 2042,194:POKE

2043,195
2220 REM** SET COLOURS **

2230 POKE V+39,0:POKE “V+d0 13

POKE V+41,0:POKE Vede,o

2240 REM**INIT SHIP COORDS *#

2270 POKE V+i1,S0:X0=160

2270 REM**® EXPAND SPRITES x

2300 POKE Vt29 iS:POKE V+23,2

2320 REM** TURN ON SPRITES «*

2330 FPOKE tee

2340 RETURN

2350:

6000 REM** SHIF DATA ##

6010 DATA 0,0,0,0,0,0,0,0,0
6020 DATA 0,128,0,0,192,0,0,
12,0
4030 DATA 0,192, 0,4 224,654,
224,0

4040 DATA 13,224,0,3,248,128,

3,253,8
6050 DATA 15,254,16,31,255,4¢8,
255,255,255
6060 DATA 127,225,254,63,255,
294,31 ,255,252

4070 DATA O,0,0,0,0,0,0,0,0

6100 REM** EXPLODE DATA £*

4110 DATA 0,0,0,0,0,0,0,14,0,
0,8,0,4,16
6120 DATA 0,3,2,64,1,56,128,
12. 255,188
6130 DATA 1,236,40,5,151,0,11,
Lele hee!

ot

6140 DATA 183,0,25,214,%6,0,
236,498,.6,24

4150 DATA 19253 ,.78,0),. Siegal)
0,746,128,0

$140 DATA 649,0,0,0,0,0,0,06
$200 REM** DEPTH CHRG DATA #*

6210 DATA 0,0,0,0,0,0,0,0,0, .
0,0,0,0,0

4220 DATA 0,0,0,32,0,0,32,0,
0,32,0,0,32,0

6230 DATA 0,0,0,0,0,0,0
6240 DATA 2,0,0,2,0,0,2,0,0,
250,86

6250 DATA U0,0,0,0,0,0,0,0

5260 DATA 0.0,0,0,0,0,0,0

6300 REM** SUBMARINE DATA ¥#*
6310 DATA 0,0,0,0,0,0,0,0,0,
o.,0,0

$2320 DATA 0,5,0,0,12,0,0,12,0

6330 DATA 0,12,0,0,28,0,0,60,0
4340 DATA 0,1246,0,199,255,255

6350 DATA 239,255,255,127,
255,255

6360 DATA 255,255, 254,199
255,254
4370 DATA O70 0,00 50 70st
0,0,0,0,0,0

126
1 2 2

1239 255 255
it. mo 2
299 255 254
199 255 254

LIZ DIXON

THE HOME COMPUTER ADVANCED COURSE 265

|

The central processing unit or CPU is the
nerve centre of your home computer. In this
instalment of the Computer Science course,
we take a look at the logic of data transfer
between the CPU and memory. In this
discussion, we introduce the address and
data buses, tri-state devices and the
memory address register.

Each memory location in a home computer is
normally made up of eight bits. Data can be
transferred, eight bits at a time, along a series of
eight parallel lines to the CPU where the data can
then be used according to a program instruction.
Data can also be sent in the opposite direction in
order to be stored in a memory location. The
machine code instruction LDA $1234 causes the
number in location $1234 to be sent along the data
bus to the CPU. STA $1234 causes a number to be
sent from the CPU, again down the data bus, and
stored in location $1234.

The data bus must therefore allow transfers in
both directions. At certain times it is also
important to isolate the CPU from the data bus.
Thus each line of the data bus can be in one of
three states (INPUT, OUTPUT or ISOLATE).
In order to achieve the necessary switching
between these states, each data bus line has a small
electronic circuit known as a tri-state device.

DATA BUS

Direction Select

(Input/Output)
Enable

(Isolate)

Fight such tri-state devices are combined into a
single integrated circuit. The diagram above
shows how this integrated circuit links the data bus
with the CPU. The diagram also shows the
‘enable’ and “direction select’ lines, which put the
eight tri-states into the required operative state.
Such circuits can also be used for connecting other
devices, such as input/output peripherals, to the
data bus.

266 THE HOME COMPUTER ADVANCED COURSE

Ee

Whenever we wish to call up the contents of a
particular location we refer to the location
required by its address. Each location in ROM
and RAM has its own unique number that refers
toit. Let us nowlook at how, at the hardware level,
any location in memory can be accessed so that a
data transfer can be accomplished.

Most microcomputers have a second highway
between the CPU and memory called the address
bus. Normally, the address bus has 16 lines rather
than eight. This means that up to 65,536 separate
addresses can be specified (2'° = 65,536). Thatis,
up to 64 Kbytes of memory can be accessed using
a 16-bit address bus. The total memory area can
be thought of as being broken up into modules,
each containing 256 locations. The lower eight
bits of the address can then be used to find the
particular location within a given module. The
module itself may be selected by using some or all
of the remaining eight address bits.

If we consider the simple example of a
microcomputer with a total memory size of two
Kbytes, we can see how the selection of any
particular location takes place. As each module of
memory contains 256 locations, our two-Kbyte
computer will require eight modules. For our
simple computer we will assume that the memory
is equally divided between ROM and RAM.

The address of the required location is held in a
special 16-bit register in the CPU, called the
memory address register or MAR. As the lower
eight bits of the address select a particular location
within any module, the lower eight lines of the
address bus can be connected to each of the
memory modules. In order to select a particular
module we now require only a further three bits
(2° = 8). This three-bit code must be decoded into
eight output lines, one for each module.

The diagram shows how memory modules link
via these data and address buses to the CPU. Each
memory module has a single line to it from the
three(bit)-to-eight(line) decoder. Three of the
higher address bits are used to determine which
module is to be selected. If more RAM modules
were to be added, then more of the upper eight bits
would be required to select any single module.

MACHINE CODE INSTRUCTIONS
Having seen how a particular location in memory
may be selected and data transferred, let us look at
how the CPU carries out a machine code
instruction. Any machine code program is
normally stored in consecutive storage locations.
One instruction may take two or three bytes of
storage. An instruction such as ADD $13FF means
‘add the contents of the location with hexadecimal

a ein

TRI-STATE BUFFER

address $13FF to the accumulator’. This
instruction would require three bytes: one to hold
the binary code for the instruction ADD and two to
hold the 16-bit address, $13FF. Let us say that it is
stored in locations $1000, $1001 and $1002.

Before the instruction can be processed it must
be fetched from memory. This requires three
separate accesses to bring the three bytes along the
data bus to the CPU. On completion of the fetch
cycle, the complete instruction is in a special
register within the CPU. All that remains is to
decode the instruction and obey it. The instruction
in our example requires a further memory access
to get the contents of location $13FF so that it can
be added to the accumulator.

All computer manufacturers publish the
characteristics of their processors in the form of

Fetch Instruction

=_ — Ee og =

timing diagrams. These show the order of events
for a number of different computer operations.
We can draw up a timing diagram for the fetch and
execute cycles of a machine code instruction. The
timing of operations is controlled from the clock
pulse (see page 246) and our graph shows that in
this imaginary system the address bus is enabled
by the sync pulse leading edge, while the data bus
is enabled by the sync trailing edge. The sync pulse
itself is triggered by the trailing edge of the first
clock pulse in any operation phase, or machine
cycle. The cycles are of different durations
because the processor needs longer to decode the
op-code byte of an instruction than to handle the
operand bytes: the op-code must be decoded
immediately because it specifies the number of
operand bytes.

Instruction Cycle |

Input

Execute Instruction

a

Fetch And Execute
A machine code instruction
consisting of an op-code byte
followed by two operand bytes
is handled in an instruction

cycle comprising fetch and |
execute phases. During the fetch
phase the address bus accesses
the memory locations holding
the instruction, and the data bus
carries the instruction bytes to
the CPU. Here, the data and
address buses are still busy
during the execute phase
because the instruction being
executed causes a memory
access

Data

LIZ DIXON

THE HOME COMPUTER ADVANCED COURSE 267

User-Defined Character
Character generators build text
and other characters from a
number of dots. Some character
generators allow users to define
their own characters, such as
the Japanese symbol for
‘bridge’ shown here. However,
few micros possess the
necessary 16 by 16 grid of dots
for such a complicated symbol

CHAIN
This is the name for another form of data
structure, similar to ‘tree’, ‘stack’ and ‘list’. In a
chain, each item of data contains a pointer to the
location of the next item. This is particularly useful
for storing information on disk, where for reasons
of efficiency it is often necessary to spread a single
file across several areas on the disk surface.

As the name implies, however, it needs only one
of the links in the chain to be broken — perhaps by
a tiny flaw in the magnetic recording surface — for
the whole of the file to be lost, so additional means
of access are usually built in for safety.
Many computers can also ‘chain’ programs. In

this case the computer loads one program, runs it,
then automatically loads another program and
repeats the process. A number of short programs
can thus be ‘chained’ to give the effect of a single
long program. A common example of this is in
games programs, which often load the playing
instructions first, and, once they have been read,
overwrite them with the main program. In this way
the whole of memory becomes available to the
main program and its variables, and no space need
be wasted on storing instructions.
A daisy-chain is somewhat different in that it

describes a hardware configuration -— usually the
way that peripherals are connected to the central
computer. One such configuration has each
peripheral plugging in to its own dedicated port,
another uses a common data bus to link all devices
together (as in a local area network). In a daisy-
chain, the first peripheral plugs into the
computer’s peripheral port. This peripheral
features its own port, into which a second add-on
device is plugged, and so on. The end result has the
appearance of a daisy-chain, with the flowers
representing the devices, and the stalks the links
between them.

CHANNEL
A channelis a route through which data can flow,
though in microcomputer terms it refers not to the
bus or interface that transmits the data, but the
software that controls it. With most operating
systems, before data can be sent to a device (the
screen, disks or printer, for example) a channel
must first be opened, which amongst other things
will usually reserve an area of RAM to act as a
buffer.

Thereafter, all data for that device will be sent to
the channel, which is identified by a number or a
name, and the operating system will then
automatically route it to the hardware device,
without further intervention by the program. On
some older computers all this had to be set up by
the programmer, whereas on many home
computers the whole process is now taken care of
by the operating system.

One of the advantages of using channels is that
the programmer is not dealing directly with the
hardware devices. If a program has been written to
address a printer through, say, channel number
five, and the programmer wishes to convert it to

268 THE HOME COMPUTER ADVANCED COURSE

run on a plotter, he need only change one
instruction at the start of the program to specify
that channel five now refers to the plotter, instead
of having to change all the PRINT and WRITE
statements individually.

CHARACTER GENERATOR
The device that specifies the design of characters
on the screen is known as the character generator.
This is a section of the memory containing
patterns of ones and zeros that specify the
arrangement of dots on the screen.

These patterns are generally stored in ROM,
although most home computers will allow the user
to specify an area of RAM to replace the standard
character generator. This enables you to alter the
designs of any alphanumeric or graphic
characters, and create your own customised
character set.

ERR 6hUc
_| | | Be | | |) ee
| te | | oe oe | |
Bs fl

| | | oe
BRRERREESERE Aes
CHECK DIGIT/CHECK BIT
A specific number included in data to help spot
errors in its recording or transmission is known asa
check digit or check bit. Check digits are most
commonly used when transmitting information
over a long-distance line, or recording it onto a
magnetic surface — both operations that are prone
to errors.

The check digit is simply an additional piece of
information that is a mathematical product of the
actual data being sent, and is transmitted at the
end of that data. When the data is received, or read
back off the disk, the mathematical function is
again performed, and if the new result does not
agree with the check digit, an error has occurred.

The mathematical function involved may be
quite complex, or it may be as simple as adding
together all the bytes in the data block, dividing the
result by 256 and then using the remainder as the
check digit — this is usually known as a checksum.

Check digits are not the exclusive preserve of
computers — they can be found in some credit
card and cash retrieval systems, as well as
International Standard Book Numbers found on
book covers.

LIZ DIXON

ORIC ATMOS/HARDWARE el

ORIC'S OFFSPRING

The Oric-1 was launched onto the UK
market in 1983, but has never enjoyed the
success of its competitor, the Sinclair
Spectrum, because of design faults and a
lack of software support. Now, Oric
Products has launched a new and improved
model, the Oric Atmos, which has remedied
the shortcomings of the previous machine.

Equipped with a powerful Microsoft-style Basic, a
built-in Centronics printer port and a standard
RGB monitor socket, the Oric-1 originally looked
a good investment. However, a shortage of good
software, coupled with some irritating bugs in the
BASIC ROM, resulted in a lukewarm reception for
the new machine.

Oric Products International has now rectified
the major ROM errors and repackaged the
computer as the Oric Atmos. The old calculator-
style keyboard has been replaced by more
professional full-travel typewriter keys, and the
casing has been redesigned in a stylish red and
black livery. The keyboard layout is the same as
that of the Oric-1, with the addition of a Function
key, which is as yet unconnected but is supplied in

the interests of ‘future expansion’.
The Atmos uses the 6502 microprocessor, and

in normal operation has 37 Kbytes of RAM free
for BASIC programming. Eight colours may be
displayed by the Atmos, which has a maximum
resolution of 240 X 200 pixels. The character set is
held in RAM, allowing any character to be user-
defined. There is also an alternative character set,
which gives teletext-style block graphics. Unlike
the Spectrum, which maintains a_ separate
attribute file in RAM, the Atmos uses ‘serial
attributes. These use less memory but are
displayed on the screen as blank spaces, so care
must be taken when planning screen displays. .

The Atmos ROM contains four pre-set sounds
— ZAP, PING, SHOOT and EXPLODE — and these
provide arcade-type sound effects. The MUSIC,
PLAY and SOUND commands allow the user to take
full advantage of the Oric’s sophisticated sound
chip, by setting a wide range of parameters to vary
the sound. Volume ranges from very quiet to
extremely loud, and the three tone channels and
one noise channel give a seven-octave range.

The original Oric BAsic was notable for several
annoying bugs. The TAB command did not work
properly and the display was often corrupted by

r ee

fe

IAN McKINNELL

Atmos System
The Oric Atmos is a modestly
priced home computer with 48K
of memory, colour graphics
and sound. Oric makes two
add-ons for the Atmos, both in
matching colours. The disk
drive gives a fast alternative to
using a cassette recorder and
the printer/plotter can draw
lines or text in colour

THE HOME COMPUTER ADVANCED COURSE 269

“. HARDWARE/ORIC ATMOS

The Oric also
introduced spurious control codes when
evaluating the STRS function and gave incorrect
results when LEN or VAL were used. The new ROM
overcomes these difficulties. An unfortunate side
effect of these improvements is the fact that Oric-1
machine code programs are unlikely to work on
the Atmos, as several ROM routines have been
relocated in memory.

The BAsic is an extended version of the
Microsoft dialect, developed by Tansoft from the
original Tangerine asic. It supports the full
IF... THEN...ELSE structure (Oric-1 Basic had a bug
in the ELSE segment of this command) and also
provides the REPEAT...UNTIL loop instruction. An
unusual feature is the provision of POP and PULL
commands, which are used to jump out of GOSUB
and REPEAT...UNTIL routines without producing an
error report. Oric-1 BAsic would not allow the user
to POKE an address with a hexadecimal value; this
too has been corrected in the new ROM.

On early versions of the Atmos there were some
problems with the new ROM. When designing the
new chip, Oric included an updated error-
checking routine for LOADing cassette tapes. This
routine was so effective that users quickly
discovered that the software found errors in
programs on all but a very few cassette machines.
However, Oric’s redesigned ROM allows
programs to LOAD satisfactorily.

To coincide with the new Atmos, Oric has
redesigned its printer/plotter, which is now
finished in the same red and black livery as the
computer. Four small ballpoint pens (black, red,
green and blue are the colours supplied with the
unit) are set in a revolving plotting head; any
colour may be selected under software control.
The printer/plotter has a slow text speed of 12
characters per second but prints on plain paper.

The long-awaited microdisk drive has also been
redesigned in the new Atmos colours. Oric has
opted for the Hitachi 3” disks; these are encased in
a rigid plastic shell. The Atmos can use up to four
drives — a single master unit with an on-board disk

the various sound commands.

270 THE HOME COMPUTER ADVANCED COURSE

RF Modulator RGB Socket
Converts the video signal into Allows the Atmos to be Cassette pat
One suitable for use _ an connected to a monitor This 7 pin 270° DIN socket
ordinary TV. connects a domestic casset

player to the Atmos

Speaker
Extra large speaker allows for
better definition of the sounds
generated

RAM
The Atmos contains 64K
of RAM, although only 48K is
actually used

Sound Chip
This chip enables the Atmos to
produce its wide range of
sound effects

_____ This key is not connected

Expansion Port
ntains one 34 channel

jarallel bus to connect to the
disk drive —

Heatsink |
___ To dissipate the heat generated

__ by the electrical circuits
pee See

Improved Version V1.1 BASIC
ROM
The single ROM chip holds the
new version of the Tansoft
BASIC

Fests
Beets

CPU |
The central processing unit is a
6502A microprocessor

CHRIS STEVENS

interface system, and up to three slave drives. As
yet, no slave units have been produced, but these
are expected shortly. The disk drive comes with a
Separate power transformer, which is powerful
enough to drive two disk units and the computer
itself. In early versions of the disk operating
system, problems occurred when the printer and
the disk drive were both swiched on. Any attempt
to edit a program line resulted in the edited line —
as well as all of the numbered program lines —
being deleted from the listing. Oric claims that
later versions of the operating system have
overcome this difficulty.

Although early versions have been subject to
problems in printer and cassette use, Oric
Products seems to have given a great deal of
thought to the production of the Atmos and its
peripherals. The design team has taken note of
criticisms levelled at the earlier Oric-1 and most of
the errors have now been corrected. Oric-1
Owners were poorly served by software
manufacturers and, to counter this, Oric Products
has commissioned Tansoft to produce a set of
programs to be used with the disk drive. If software
production increases, the Atmos should capture a
larger share of a very competitive market.

THE HOME COMPUTER ADVANCED COURSE 271

CHRIS STEVENS

In the last instalment we
random access files and explained how they
contrast with sequential files in terms of the
amount of information they can handle and
the speed at which this can be accessed. We
now look at how this information can be
organised in random access files, using the
index and hash facilities.

If you have experimented with random access
files, you will appreciate that they can make
programming with files very easy. You can specify
any particular record to read or write to, without
having to bother with the cumbersome
procedures needed to retrieve data stored
sequentially. However, the methods of insertion
and deletion that we detailed on page 244 are not
the most efficient means of using random files; a
far better method is to access the information
using an index.

To create an index, a particular field of each
record must be specified as a key. The value of this
field will then be used to select particular records
for display or processing. An index is thus built up,
consisting of the value of the key field for each
record, together with its corresponding record
number. Thus if the record relating to Hilda Zeff is
record number 17, and is the eighth record in an
alphabetical listing, then the index array will store
17 in the eighth position. If the index is regularly
sorted, searching for a record can be a very fast
process.

The index is usually stored in RAM in order to
be readily accessible. It can be generated on the
spot, with a routine that reads through the entire
random file, pulling out each Key field into an
array. This index can then be sorted ready for use.
However, this introduces a long delay. An
alternative method is to store index files on disk as
well as data files. In this way, any number of key
fields for a file can be created through index files
stored on the disk. This will also enable the file to
be indexed in different ways: for example, records
could be given in name order (both A to Z or Z to
A), date order, and so on.
How would you store an index file? An index

file needs to contain two fields (the key data and
the record number) for each record. This will be
read into memory in full, ready for use and will be
written out again only if it is to be updated or
amended. This is an ideal application for a
sequential as opposed to random access file,
because the data is required in the order in which it
is stored. This is one area where sequential and
random access files complement each other.

272 THE HOME COMPUTER ADVANCED COURSE

Removing unwanted records from indexed
random files is simply a matter of marking the
records as deleted and ensuring that they no
longer feature in the index. The most economical
way to do this is to write a ‘deleted’ marker into the
record — an asterisk at the start of the first field
perhaps — as the whole field consisting of a delete
flag would be a wasie of space. The key for that
record could then be removed from the index, or,
alternatively, the record number could be set to
some special value that indicated the record was _
deleted, —1 perhaps.

Whatever the method chosen, it is important
that there is a record of the deleted records in the
file. When new records are added to the file they
can overwrite a deleted record. The original index
entry must be replaced with a new one and, at a
convenient point, the index re-sorted to include
the new record at the correct position within the
file. In this way, the program will provide a facility
to recover accidentally deleted records, provided
they have not been overwritten in the meantime.

It is a good idea to provide a way of tidying up
the index file. The system of indexing we have
detailed invites records to be stored out of order
and with numerous and unnecessary gaps
between them. While the file will work, the speed
of access will gradually slow down. The tidy-up
routine should sort the records into a convenient
order and discard any deleted records within the
file. Tidying up can be carried out as a user option
or perhaps automatically whenever the system
finishes a major operation.

Indexing is not the only means of finding
specific records in a large file very quickly.
Hashing is an alternative method that is well
suited to extremely large files and is therefore
usually only seen in hard disk systems, or
machines with very high capacity floppy disks.
However, many operating systems and programs
use hashing internally to speed up their operation,
so it’s certainly a technique worth knowing about.

Hashing replaces the index with a formula or
hashing algorithm. This takes the value of the key
field and produces from it a record number,
known asa hash. The record that goes with the key
is then stored at this position in the file. The
formula would be devised according to the type of
data in the key field. If the key field contains a date
— to enable the records to be sorted
chronologically — you might use the month
number, multiplied by the last two digits of the
year, plus the day number. A name field could be
hashed by manipulating the ASCII codes used for
the letters within the name and so on.

Suppose we want to create a hashed file of

employee records using surnames as the sort Key.
The hashing algorithm that we will use is: take the
ASCII codes of the first four letters and treat them
as an eight-digit number, square that number,
then take the last four digits of the number as the
hash. JONES, therefore, hashes into record 1161,
whereas JONQUIL hashes into 0161.

Hashing is very different from an indexed
system. With hashing, you can only have one key
field (and one hashing algorithm) per file and this
is used when first placing the records in the file.
Any number of indices can be associated with a
particular file and these can be created at any time
after or during the file’s creation.

Hashing is less flexible than indexing but it is
much quicker. To find a particular record, the
program just takes the key, hashes it and retrieves
that particular record. The time taken to search an
index (and indeed to create it in the first place) is
therefore dispensed with.
A problem with hashing arises when two

records generate the same hash code and
therefore should occupy the same position in a
file. To avoid this, hashing algorithms are carefully
designed so that no two keys (save for identical
ones) generate the same hash. Additionally,
records are spaced out in the file so that two hashes
that are apparently next to each other actually
cover a gap of five or so unused records.
We can now clarify our description of a hashing

system as follows. When a record is stored, its key
is hashed to produce a record number. If that
record is occupied, the system looks at the next
record sequentially. It can do this for the whole
block of five (or whatever) records associated with
that hash. When a record is to be retrieved its key
is hashed and that group of records is then
searched sequentially for an exact match. This
may seem to nullify the speed advantage, but what
hashing effectively does is to reduce the number of
records to look through from perhaps three
thousand to five or six.

What happens if all five or so records for a
particular hash become filled? There are several:
ways to cope with this, the obvious one being to
report a ‘file full’ message. More often, records
that can’t be fitted in position in the file are written
to a separate overflow file with its own index and
incorporated into the main file when possible.
Most systems make a determined effort to avoid
overflow by habitually keeping hashed files only
80 per cent or less full. This highlights another
limitation of hashed access to random files. A
hashed file tends to consume more space than if
the system used an index.

Hashing also speeds up the deletion of
unwanted records. You simply hash the key of the
record, do a quick search to locate it exactly and
mark its position as unfilled. It will then be
overwritten the next time a record with an
identical hash is added to the file.

In the final instalment of this series we will look
at the BASIC commands necessary to create and
access cassette files.

[oats [7

“

af
|

[me [ie | am

“Deleted ‘Necord a

— 729 8213 | 236 2190 | pentst. «=f

| Egerton 731 6666 | 4580021 | Designer

| East =| 831.8294 | 4506218 | Caterer

THE HOME COMPUTER ADVANCED COURSE 273

10 REM¥X¥¥X¥*¥XAUDIC GAMEX*XXX*

KH

20 PRINT"A SIMPLE AUDIQ GAM.

E":PRINT:PRINT"MOVE YOUR SPACE

SHIP TQ THE BEACON BEFORE

YOUR FUEL RUNS OUT"

sO PRINTS PRINT” THE NEA

=) RER YOU ARE, THE HIGHER

S THE BEACON’S PITCH"

40 PRINT:PRINT" C
ONTROLS ARE: ":PRINT" I (UP) M
(DOWN) J (LEFT) K (RIGHT)"

60 PRINT:IPRINT" XX*¥¥***PRE
— |S ANY KEY TO STARTHXX¥XXX"

7O AS=INKEYS(0):1IF AS="" TH

| | EN GOTO 70
S 80 P=INT(RND(1)¥500)+1:Q=IN
1 T(RPND(1)¥500+1) :F=3*%(P+Q) /2: X=

|o:y=o
90 XD=0:YD=0

SS 100 PRINT "FUEL="3F," DISTAN

| | ce="5
110 IF (ABS(P-X%)<2 AND ABS(Q

| -Y)<¢2) THEN PRINT"YOU MADE IT ne focus of ei game eo eth Sey FUELOUNITS LEFT?

|—=ClorRB e is —
so 120 AS=INKEY#(0)!:IF AS="" TH

EN GOTO 120 ‘¢

130 IF (AS$="I" AND YD<¢3) THE

|1N YD=YD+t1l
140 IF (A$="M" AND YD>-3) TH

EN YD=YD-1
150 IF (A$="J" AND XD>-3) TH

EN XD=xXD-1
- 160 IF (AS="K" AND XD¢43) THE |
aN XD=XD+1 :

170 “=X+MD1Y=Y+YD

180 D=SQR((P-xX)¥(P-X) +(G-Y)¥

(Q-Y))

190 PRINT D
200 SOUND 1,-8, (255-D),2

= 210 F=F-ABS(XD) -ABS(YD):1F F fF
¢4 >0 THEN GOTQ 90
= 230 PRINT TAB(10) 3 "¥¥X#*X**CR

| ASH¥X¥¥#**" PRINT TAB(11) 5 "¥**

_| OUT OF FUEL#**"
240 PRINT:PRINT"POSITION IS

"sD" SPACE UNITS FROM BASE"

260 END

Basic lame.
This program was written on a BBC Micro in Mode 7, and is,
therefore, almost standard Microsoft BASIC. Its PRINT
commands presuppose a 40-column screen display, and will
need formatting for different displays. The SOUND command in
line 200 is specific to BBC BASIC. The value of the parameter

| (255-D) is the pitch of the note to be played, while the ee
aon __ | parameters control volume, duration and channel. INKEYS(0Q) in

Spe iene . | line 120, and the use of RND in line 80 will need attention on
’ ___|_ other machines:
t a question of listening’
oO : Spectrum
. ee ees ng | Insert LET in all assignment statements. Change INKEY$(0) to _ | INKEYS. Change RND(1) to RND. Change line 200 to:

a real ee once you set your ship 200 BEEP 0.4,(255-D)
ticular direction, it will keep going until | and insert:
eract that motion a _ - sree | 15 RANDOMIZE

cS 195 IF D> 254 THEN LET D=D-254

Commodore 64/Vic-20
Change INKEYS(0) to GET AS. Refer to your user manual for
Commodore's sound commands. Insert:

75 X=RND(-Tl)

Dragon
Change INKEYS(0) to INKEYS. Change RND(1) to RND(0).

Change line 200 to:

200 SOUND (255-D) 10

and insert:

195 IF D> 254 THEN D=D-254

Oric Atmos
Change INKEYS(0) to KEYS. Change line 200 to:

200 SOUND 1,(255-D),9:WAIT 40:PLAY0,0,0,0

and insert:

195 IF D> 254 THEN D=D-254
_ DAVE COOPER-SMITH

'TER ADVANCED COURSE |

WATER SPORT

With the software market currently
dominated by space invaders-type ‘shoot-
’em-up’ games, it is refreshing to find a new
game that shuns the well trodden path and
heads off into virgin territory. Durell
Software’s Scuba Dive is such a game: an
underwater adventure that has soared high
in the software pop charts.

There are three versions of Scuba Dive available:
one for the Spectrum (priced at £5.95) written by
Mike Richardson; one for the Oric-1 (£6.95) by
Ron Jeffs; and another for the Commodore 64
(£6.95) by Nigel Dewdney. The Oric-1 version is
being adapted to run on the Oric Atmos as well.

The player takes the role of a scuba diver
collecting treasure from the seabed, and risking
life and limb to do so. Our intrepid hero’s main
objective is to collect points-accumulating pearls,
which are taken from oyster shells and giant clams.
At a more advanced stage of the game you must
collect treasure from chests deep within the
cavernous seaworld.

However, there are many good reasons for
exercising caution as you go. The water is heavily
populated with creatures that have a detrimental
effect on scuba divers: jelly fish, octopuses, squid,
electric eels and, in the Spectrum version, sharks!
If you touch any of these creatures you lose a life,
although none of them will attack you on purpose.
You must simply avoid them at all costs. Another
danger is discovered when you start retrieving
pearls from the giant clams. These have the ability
to slam shut on you, trapping you in their grasp.

The narrow entrances to the main cavern and
the lower-level depths are guarded by giant
octopuses. Passing these can be tricky, as their
tentacles are constantly waving about. But every
now and again you can manage to sneak past. ‘The

Commodore version is octopus-less. Instead, a
trap door bars your way. This is constantly
opening and shutting and you have to slip through
without being knocked unconscious.

The program allows you three lives per game,
and has a difficulty gradient from one to four. A
life is lost if you touch any of the aquatic wildlife or
if you run out of oxygen.

Each version of the game starts off with a view
of the surface of the sea and a large portion of the
depths. The boat from which you dive is bobbing
on the surface. It is possible to get caught under the
boat as you dive, so care is needed from the
moment you go down. On the Spectrum version it
is an advantage to have a good sense of direction
because your boat can drift when you are
underwater. In the Oric version this isn’t so much
of a problem, as the boat always moves from left to
right in a screen ‘wrap-around’ fashion, and thus is
never out of sight when you surface.

The quality of the graphics on the Spectrum
version (which is by far the best of the three) is
superb. Good use has been made of colour, and
the creature and cavern design is realistic. Control
over the diver is achieved by using the X and Z
keys to turn clockwise and anti-clockwise, and the
Space and Shift keys move the diver forward.
Spectrum owners can also use joysticks, although
the program will not work with the Kempston
joystick interface. Commodore owners also have
the choice to use joysticks, but Oric players must
make do with the keyboard.

The Oric version is far less exciting than its
Spectrum counterpart in several respects.
Movement of the diver and the creatures is very
jerky, and the graphics — especially the cavern
walls and the chests — are far less detailed. The
Commodore version also lacks the Spectrum’s
detail, but it performs far more satisfactorily than
the Oric version.

Seen In Perspective
This image is composed of

several screen dumps of the
Spectrum version of Scuba
Dive. The images are joined
together to show the diver’s
view of the underwater caves

SCREEN SHOTS BY IAN McKINNELL

Quality Control
These screen pictures illustrate
the difference in qualitv between
versions of the Scuba Dive

game

Sinclair Spectrum

Commodore 64

THE HOME COMPUTER ADVANCED COURSE 275

So far in the course we have taken a detailed
look at how the CPU manipulates memory,
using registers such as the accumulator and
ALU. Now we can begin to look more
closely at how simple procedures are
performed in machine code. Here, we
concentrate on the basic arithmetical
operations of addition and subtraction.

The differences in operation between the Z80 and
6502 microprocessors in the way they go about
performing these simple arithmetical tasks reveal
the different philosophies behind their design. The
Z80’s many registers, with their sophisticated set
of operation instructions, typify the processor
itself — elegant, complex and powerful. The much
simpler 6502 architecture and operation set seem
to suggest an altogether humbler processor, which
is robust and practical but apparently not quite in
the Z80 class. This impression is accurate as far as
it goes, but the 6502’s wealth of addressing modes
and its use of zero page as an extra index register,
give it a subtlety and versatility that will enable it to
dominate the home and business micro world for
some time to come.

The great advantage of the Z80’s registers is
their flexibility — they can be treated
simultaneously as both two-byte or single-byte
registers, thus allowing enormous addressing
scope. The 6502, on the other hand, has no two-
byte registers, but is able — by way of its addressing
modes — to treat zero page as an array of single-
byte and two-byte registers.

ARITHMETICAL BASICS
We have seen that the CPU registers permit a
variety of possible memory accesses, but
manipulating memory usually requires something
more than simply loading, storing and comparing
its contents. The ability to perform the four
operations of arithmetic is essential to a computer
system, yet both the Z80 and the 6502 support
only addition and subtraction. Multiplication and
division must be programmed, as must the
addition and subtraction of numbers larger than
SFF. This is a limitation of both of the CPUs,
though the educational value to the programmer
of having to invent multiplication and division
algorithms is enormous. On the 16-bit processors
that succeeded the Z80 and 6502, however, both
Operations are supported, thanks to the greater
speed and power of the CPUs.
We have used the ADC (‘add with carry’)

instruction and a variety of INC (‘increment’)
instructions, in doing single-byte arithmetic on

276 THE HOME COMPUTER ADVANCED COURSE

both CPUs. Here are the two ways of adding
the contents of two two-byte memory locations:

9 9
B B

| STASUMR2
wees
The single-byte method employed on the 6502
can be used on the Z80, but the register-pair
method used in the Z80 version has no 6502
equivalent. Notice the strategies used to handle
the various carry possibilities, starting with the CLC
(6502) and AND A (Z80) instructions that clear the
carry flag prior to the addition, and ending with
the modification of the third byte of SUM.
Allowing for the maximum result is vital in all
arithmetic.

Subtraction can be treated similarly to addition,
both processors having a SBC (‘subtract with
carry’)instruction although two-byte subtraction
is supported on the Z80. Because of the possibility
of generating a negative result in subtraction,
however, we must now begin to investigate the
binary representation of algebraic sign.

To start, we need say no more about negative
numbers than is implied by this statement:

If A+B = 0 then it follows that A= —B

which implies that if A is a positive number, then
its negation or complement is the number which
when added to A gives a result of zero. For
example, if A is the single-byte number $04, then
its single-byte complement is SFC:

904+SFC=S100

Remembering that $100=$00 (if we have only a
single-byte register for holding the result), this
complementary representation means that

subtraction can be seen as addition with negative
numbers. That is:

A-B is the same as A+(-B)

Thus, $08-S05 is the same as $08+(-S05), and
(-S05)=SFB (as SFB+S05=$100), which means that
our original subtraction problem can be re-

et

Se

eon ae

Double Identity
The Z80’s data registers can
communicate as single-byte
registers with every other
single-byte register. They can
each communicate with
memory in direct, immediate,
indirect, absolute, and indexed
modes. When treated as BC,
DE, HL — the two-byte register
pairs — they can transfer 16-bit
data to and from memory and
the stack, and are effectively
16-bit accumulators for
addition and subtraction. This
combination of flexibility and
resourcefulness is the key to
the Z80’s huge success

KEVIN JONES

Plain And Simple
The 6502’s internal
communication is severely
linear, and restricted to eight-
bit data transfers. Only the
accumulator can communicate
directly with X and Y; only X
can communicate with the
stack pointer; and only the PSR
and the accumulator access the

stack. Memory transfers are
possible in absolute, direct,
indirect, indexed, immediate,
and zero page modes. The
6502’s inventive use of zero
page mode compensates for the
small size of its register set;
zero page can be treated as 128
two-byte CPU registers

KEVIN JONES

expressed as $08+SFB. The result of this sum is
$103, which is $03 as a single-byte number.

This kind of representation is known as two’s
complement: the complement of a single-byte
number is formed by subtracting it from $100.
There is another representation known as one’s
complement, and the two are related in an
interesting way. Consider this:

$05 = 00000101
SFA = 11111010

+]

binary
one’s complement

two's complement

S05+SFA=SFF
S05+SFB=S00

The one’s complement of a single-byte number is
formed simply by complementing or negating
each binary bit of the number. If one is added to
this result, then the two’s complement of the
number is produced. A number and its one’s

) The Sin: program reverses the order of the
character string stored at LABL1:

| 6502

ORIGIN ORG %7000
LAST1 EQU sOD
LABL1 DB ’THIS IS A MESSAGE’
TERMNS DB LAST1
; _ |

BEGIN LDX #$FF
| LDA #LAST1

PHA
INX LOGPO INX

_ _DA LABL1,X

#LaAST1
ENDLPO LOOPO
CLRSTK PLA
- |
BEGIN1 LDX #$FF

INX LOOPi

~LABL1,X
: #LAST1

ENDLP1i _ LOOP1

In the 6502 version, the code between LOOPO and
ENDLOOPO uses X-indexed addressing in a loop to
load the characters one-by-one from LABL1, and push
them onto the stack — having first pushed the ASCII
value of the terminator character to mark the bottom of
the stack. The last character pushed onto the stack is
also the terminator, this time determined from its
position as the last character in the string. This
concludes the loop, and the terminate character on top
of the stack is then cleared at CLRSTK.

The Z80 version uses IX in indirect addressing
mode to load the accumulator from LABL1 onwards,
and pushes not only the accumulator but also the flag

278 THE HOME COMPUTER ADVANCED COURSE

complement always total SFF, while'a number and
its two’s complement always total $00 (actually
9100). It is conventional then, in signed integer
arithmetic, to regard the numbers from $00 to $7F
as the positive numbers, (0 to 127) and $80 to SFF
as the negative numbers (-128 to -1). If you
compare the binary representations of these
numbers you will notice that all the negative
integers have bit 7 set, while in the positive
numbers bit 7 is always reset. Accordingly, bit 7 is
known as the sign bit of a signed number, and the
carry flag of the processor status register is set or
reset as a copy of bit 7 of the result of the last
arithmetic or logical operation.

There is no easy way round this potentially
confusing subject, and it simply has to be
approached when you start doing signed
arithmetic. Fortunately, once its implications are
understood, it can be handled mechanically by
rule-of-thumb methods. These methods, and the
multiplication and division alogrithms, are the
subject of the next instalment of the course.

register onto the stack. This means thatthe characters _
of the string at LABL1 are interspersed on the stack
with successive values of the processor status |
register.

LAST’ Eau £05
LABLi DB ‘THIS IS A MESSAGE’
TERMNS DB LAST 1
5

BEGIN LD 1X,LABL1-1
LD A,LASTI
PUSH AF

LOOPO INC Ix
LD A, CIX+0)

ENDLPO :
CLRSTK POP AF
;

BEGINiI LD IX,LABLi-1
LoorPi imc ix

CIX+0),A
CP LAST1

ENDLP1 JR NZ, LOOP1
RET

The code between BEGIN1 and ENDLP1 in both -
versions is a reflection of the previous loop and uses —
the same techniques, but this time pulling the
character string off the stack in reverse order, and
storing it at LABL1 onwards. The loop finishes when -
the terminator character is found at the bottom of the
stack.

Notice how important it is to balance stack pushes
and pulls, and that the most difficult part of the
problem is deciding how to handle the extreme
conditions — what to do at the start of the loops, how
to terminate them, and what ‘tidying-up’ (if any) is
then required.

The Z80 instruction at BEGIN and BEGIN1 (LD
IX,_ABL1-1) illustrates the usefulness of an
assembler program. Here, it decodes the expression
(LABL1 -1) to mean ‘the address of the byte
immediately before the byte whose address is LABL1 ’,
and assembles that address into the code. Most
assemblers support some measure of expression
evaluation, usually allowing one or two operands to be
modified by a single arithmetic operator — normally
> -.

2) This program reverses the order of characters in
each word of the string at LABL1, while maintaining
the order of the words themselves:

subroutine (as demonstrated on page 258).
Another significant feature is the use of the Y

register in the 6502 version, first to hold the start
address of the word while X is used as an index on the
stacking loop, then as an index on the ‘un-stacking’
loop while X holds the end address of the word.
‘Address’ is used imprecisely here as X and Y are
single-byte registers, so neither can hold a full
address. Instead, in this case they hold an offset to the
address LABL1. In contrast, the Z80 IX and lY index
registers can hold a full two-byte address.

Inthe Z80 version, IX and lY are not used at all — the
HL and DE register pairs are used instead. Like the
6502 X and Y registers, these hold the word start and

Z80
ORG coco

LASTi1 EQU 0D
SPACE EQU #20
LABLi 06 ‘THIS IS A MESSAGE’
TERMNS DB LAST 1
b

BEGIN LD DE ,LABLi-1
LOOPG CALL RVSWRD

cP LASTI
ENDLPO JR Nz, LOOPG

RET

6502 :

ORIGIN ORG #7000

LAST1 EQU 0D

SPACE EQU $20

LABL1 DB *IHIS iS

TERMNS DB LAST1

3
BEGIN LDX #%$FF

LOOPO JSR RVSWRD

_ CMP #LASTI1

ENDLPO BNE LOOPO

RTS

3
SX*¥*#HXREVERSE A WORD S/REXX*

LASTCH DB $00

LASTX DB $00

RVSWRD TXA

: TAY

INY

RVSLPO INX

LDA LABL1,%*

PHA

CMP #SPACE

BEQ CLRSTK

CMP #LASTI1

ENDRVO BNE RVSLPO

CLRSTK PLA
STA LASTCH

STX LASTX

RVSLP1 PLA

STA LABL1,Y

INY

CPY LASTX

ENDLP1i BNE RVSLP1

LDA LASTCH

RTS

There are several points of interest here: the use of JSR
| and CALL instructions, for example. The RVSWRD

_ subroutine is similar in structure to the program given
_ in Exercise 1, but it reverses only the characters of a
word, not the whole string. In both the 6502 and Z80
versions, the index register (X and IX respectively) is
used to pass the start address of the word to the

- gubroutine, and the accumulator is used to pass back
to the calling program the value of the character that
terminated the work (either a space or the string
terminator character). Passing values this way is a
very common Assembly language technique, and
must be used with care — especially if you are in the
habit of pushing all CPU registers at the start of every

5

sX¥*#*XREVERSE A WORD S/R***

LASTCH DB $00
RVSWRD PUSH DE

POP HL
INC.) HL

RVSLPO INC DE
LD A, DE)
PUSH AF
cP SPACE
JR Z2,CLRSTK
cP LAST1

ENDRVO JR NZ ,RVSLPO
CLRSTK POP AF

LD CLASTCHD ,A
3

RVSLP1 POP AF
LD CHL) A
INC 9 HL
LD A,L
cP E
JR NZ ,RVSLP1
LD A,H
cP D

ENDRVi JR NZ,RVSLP1
LD A, (LASTCH?
RET

end addresses, but instead of being indexes on a base
address, they are used as indirect addresses (the
instruction LD A,(DE) means ‘load the accumulator
from the byte whose address is held in DE’). Allthe Z80
register pairs can be used in this way. An odd
limitation of the instruction set is the lack of any two-
byte comparison instruction. Thus, comparing the
contents of DE and HL involves comparing E with L,
then D with H. Similarly, in the 6502 version, X and Y
are compared indirectly using a memory location,
since there is no instruction for comparing X with Y.

THE HOME COMPUTER ADVANCED COURSE 279

IAN McKINNELL

On Offer
These are some of the latest
games on offer from Quicksilva.
The company now produces
games for a wide range of
computers

QUICK SELLERS

Just about every week a new software house
specialising in games programs appears in
the market place. Yet very few of these ever
seem to establish a permanent place for
their products on the high street shelves.
One of the exceptions is Quicksilva, which
since its inception in 1981 has rarely been
out of the top ten best Sellers lists.

The production of the Sinclar ZX80
microcomputer was the initial impetus for
Quicksilva. The success of the machine
encouraged a self-employed test engineer called
Nick Lambert to design a three Kbyte add-on
board to supplement the ZX80’s meagre one
Kbyte memory. This he sold successfully b
order. When Sinclair released eG 31

QUICKSILVAPRESENTS

—. The
ea

SPECTRUM GAMES FRom
QUI KSI LVA

based on te book by

RAYMOND BRIGGS
Runs on the 48K spect’

280 THE HOME COMPUTER ADVANCED COURSE

w

_ predictable: soon it hopes to ma. cea bigs sp

the company’s turnover for its first year of
operation amounted to £70,000. Quicksilva
products are now stocked by the large chain stores
and by 150 independent retailers. The company
also believes that its games reach over 70 per cent
of the world market.

Such a considerable upsurge in demand has
meant that the company has had to expand
quickly beyond a three-man operation. Quicksilva
now advertises for software authors in the
computer press, and a games writer can expect to
earn up to 15 per cent royalty on every one of his
cassettes sold. The company today continues to
diversify and has moved away from concentrating
entirely on the Sinclair machines: the current

_ Quicksilva catalogue includes games designed for
BC Micro, the ee = Commodore 64

| 20.

ther ways, the company’ CRE rs typ

~ the North American software market.

Rod Cousens Mark Eyles
The present managing director Advertising director and one of
of Quicksilva the founders of the company

MAP BY KEVIN JONES meinen

‘COURTESY OF QUICKSILVA

Coming soon in

Beautiful patterns can be created
A eldemcrcts{om ohimpecsbatemait- male pati
geometrical formulae. We show
you how with a program for the
13331 Om \/ bet comms) ol=fo1 sab naqer-HaXe |
Oric-1/Atmos in Issue 17

Oxohaaheleiccyave)vuacsMor-vamc-V.qomaatoyba
enthusiasm travelling and impress
their fellow train passengers if
they equip themselves with a lap-
held portable micro. Our feature in
Issue 18 reviews half a dozen of
these light-weight wonders

id sXowod sYopCor- mo) dal-malelaimcyabaik-)arer-ta
be one of the most confusing
io) o} (or-m dat: Land a> moxo) aay o)bIK=y a pESY=) a ak-TS
oc (ol—wms ba f-3-) (=e ke com aCcro mace fant
on daisy wheel printers, which
offer the highest quality of print -
Jo} than ak-hi(om-sat- Co fmm Kole)

THE Home COMPUTER ADVANCED COURSE
.

Minefield is a favourite computer
fo Fchaatomeor-Vlthate mie) are jet lol aauialice-balomre|
fast finger on the keyboard. Ina
new series beginning in Issue 20,
we program this game for the BBC
Wifes comme-lahatem-lohic-bale-\el-Me)maatc
machine’s superb graphics
capability

bofoyaayo)bhatatemcr-hicct-micolt mt sid amare)
money to invest on the stock
exchange, do the next best thing
Jop'm ey Wisbate m- Wy o)bt-stalot-1-me f-haslo mena!
your micro. We review a portfolio
oy Md aoroyomcsnaqhele-yaleyarswnem f-t-)1(- 974

Give your computer some
jo) Colaba tom Com Cole) ar-lmopimbnalaiilo mim ion-o
digitiser-a device that turns
images into numbers. Digitisers
Ego M940) (-Whalovom- bale Moreyadyol-ta—vo mea
Issue 21

All this and, of course, the Home Computer Advanced Course regular
features: applications, reviews of hardware and software, programming

iC=Yod ab able jbX=t-Hm aat- (od sbhal-Molole (mop goles q-taalome-valemarlblol im acloya- eae

PLACE A REGULAR ORDER WITH YOUR NEWSAGENT

Ls COMPUTER

ED COURSE
ST OF YOUR MICRO

ALL THE WORLD’S GREATEST CARS

WEEK BY WEEK

OUT NOW

a)

e
t

n
e
e

CAN SS
A major event for every motoring enthusiast. THE CAR is a
unique opportunity to build your own complete reference
library of the World's greatest cars.

Published in weekly parts, each issue is packed with superb
detailed illustrations in glorious colour, and backed with expert
information.

THE CAR’S outstanding features include:

* Colour cut-away features on the great cars

* Motoring milestones, the great motor races of all times

* The legendary machines such as the Panther 6 and Riley 9

* Comprehensive superbly illustrated A-Z guide to the World's
greatest cars, incorporating precise specifications and
performance details

Place a regular weekly order with your
newsagent — NOW!

WAR MACHINE — arm yourself with all the facts

War Machine gives you the inside story. Week by week this
outstanding work of reference and information builds into an
unrivalled dossier of facts about the machines of war, their fire
power and fighting tactics.

War Machine will feature:

* Over 2,500 weapons

* Nearly 2,000,000 words of clear and authoritative text written by
acknowledged experts

* At least 5,000 pictures, nearly all in full colour

* Over 2,000 superb technical drawings and diagrams in full colour

* A country-by-country A-Z of Armed Forces, on land, sea and in
the air, highlighting uniforms, equipment, orders of battle and
tactical doctrines

Issue 1 on sale at newsagents now with issue 2 free

WORLD WAR II

Accept this 96-page first volume of VVORLD WAR II completely
free when you purchase your first issue of War Machine

The men, machinery, strategy and tactics are highlighted by action
photographs and detailed campaign’maps.

Start your collection with the first FREE volume, featuring: —

Hitler: the Making of a Dictator The Road to War
Blitzkreig on Poland Rival Plans for the Western
Battle of the River Plate Front
The Fate of Norway Finland: the Winter War

Complete in 30 fortnightly volumes

Place a regular order at your newsagent’s now

